Characterization of an intracellular alkaline shift in rat astrocytes triggered by metabotropic glutamate receptors.
نویسندگان
چکیده
The modulation of intracellular pH by activation of metabotropic glutamate receptors was investigated in cultured and acutely dissociated rat astrocytes. One minute superfusion of 100 microM (1S,3R)-1-aminocyclopentane-1, 3-dicarboxcylic acid (ACPD) evoked an alkaline shift of 0.13 +/- 0. 013 (mean +/- SE) and 0.16 +/- 0.03 pH units in cultured (cortical or cerebellar) and acutely dissociated cortical astrocytes, respectively. Alkalinizations were elicited by concentrations of ACPD as low as 1 muM. The ACPD response was mimicked by S-3-hydroxyphenylglycine (3-HPG) and by (s)-4-carboxy-3-hydroxyphenylglycine (4C-3HPG) but was not blocked by alpha-methyl-4-carboxyphenylglycine (MCPG) or (RS)-1-aminoindan-1, 5-dicarboxcylic acid (AIDA), features consistent with an mGluR5 receptor-mediated mechanism. The ACPD-evoked alkaline shift was insensitive to amiloride, 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS), and the v-type ATPase inhibitors 7-chloro-4-nitrobenz-2-oxa-1,3-diazol (NBD-Cl), bafilomycin, and concanamycin. The alkaline response persisted in Na+- or Cl--free saline, but was reversibly blocked in bicarbonate-free, N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered solutions. A bicarbonate-dependent and Na+-independent alkaline shift could also be elicited by either 3 mM caffeine or 1 muM ionomycin. These data suggest that a rise in cytosolic Ca2+ activity is instrumental in triggering the alkalinizing mechanism and that this response is independent of the classic depolarization-induced alkalinization mediated by electrogenic sodium-bicarbonate cotransport.
منابع مشابه
Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ.
The spatial-temporal characteristics of intracellular calcium ([Ca2+]i) changes elicited in neurons and astrocytes by various types of stimuli were investigated by means of confocal fluorescent microscopy in acute rat brain slices loaded with the Ca2+ indicator indo-1. Neurons and astrocytes from the visual cortex and CA1 hippocampal region were identified in situ on the basis of their morpholo...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملPhotolysis of caged Ca2+ but not receptor-mediated Ca2+ signaling triggers astrocytic glutamate release.
Astrocytes in hippocampal slices can dynamically regulate synaptic transmission in a process mediated by increases in intracellular Ca(2+). However, it is debated whether astrocytic Ca(2+) signals result in release of glutamate. We here compared astrocytic Ca(2+) signaling triggered by agonist exposure versus photolysis side by side. Using transgenic mice in which astrocytes selectively express...
متن کاملModulation of Pineal Melatonin Synthesis by Glutamate Involves Paracrine Interactions between Pinealocytes and Astrocytes through NF-κB Activation
The glutamatergic modulation of melatonin synthesis is well known, along with the importance of astrocytes in mediating glutamatergic signaling in the central nervous system. Pinealocytes and astrocytes are the main cell types in the pineal gland. The objective of this work was to investigate the interactions between astrocytes and pinealocytes as a part of the glutamate inhibitory effect on me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 79 2 شماره
صفحات -
تاریخ انتشار 1998